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Abstract

A numerical scheme based on the method of numerical integration along bicharacteristics is developed for the
numerical analysis of torsional wave propagation in layered orthotropic media. The dynamic behavior of a layered
orthotropic bar of rectangular cross-section due to impact torque is studied. Moreover, the stability of the present
method is investigated. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has been long recognized that the propagation of stress waves in layered media has important ap-
plications in seismology, geophysics and composite structures. A beginning in the field of the transient wave
propagation in elastic solid was made by Lamb (1904), then many researchers devote their attention to the
transient wave propagation properties in layered isotropic solid (Kennett and Kerry, 1979; Luco and Apsel,
1983; Alterman and Karal, 1968). Moreover, the problems of two-dimensional wave propagation in layered
transversely isotropic media were solved by the authors (Liu et al., 1997; Liu and Xie, 1998). Nevertheless
very little attention has been paid to the range of three-dimensional wave propagation problem in aniso-
tropic one, just as the case of a bar of noncircular cross-section subjected to impact torque.

In this paper, a numerical algorithm based on the finite difference along bicharacteristics (see e.g.
Courant and Hilbert, 1962; Butler, 1960; Clifton, 1967; Ting, 1981) has been proved to be an effective
technique for solving the wave propagation problems in layered orthotropic media. The obvious advantage
of this method is attributed to the fact that the propagation, reflection and interaction of stress wave in a
body can be examined in detail (Lambourn and Hoskin, 1970; Karpp and Chou, 1973). Now, this method
is extended to illustrate the three-dimensional torsional wave propagation in a layered orthotropic bar of
rectangular cross-section. As for the layered medium, the key problem is of treating the points on the
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interface. Here, we introduce the continuity condition and the available compatibility relation along bi-
characteristics to deal with the previous problem, which has been successfully applied to analyzing and
numerical simulating the torsional wave propagation in a layered transversely isotropic cylinder (Liu et al.,
1997; Liu and Xie, 1998). Moreover, both the von Neumann necessary condition and the relative energy
error are taken to investigate the stability in the system.

2. Three-dimensional analysis of torsional waves

Let us consider a rectangular bar, consisting of m layers of orthotropic and homogeneous material,
which is subjected to an impact torque on its end surface z = 0 and the lateral surfaces are free from ex-
ternal forces (Fig. 1). For the arbitrary layer of the rectangular bar, it is convenient to assume that the
planes of the cross-sections of the layered bar maintain to planes of elastic symmetry (the state of stress is
pure shear). In consequence, the equations of motion can be written in terms of the Cartesian coordinate
system (x,y,z) as

oot 3ol O
Xy x i X 1
dy = P (1a)
aaf(y aaj,z l@v; b
o o P a (Ib)
dct, 0o, L Ovf
Tz 2= i = 1
> oy Fa (1c)
where the superscript i (i = 1,2,...,m) denotes the layer number of the material, p the mass density, g,,, 0,

and o, the stress components, v,, v, and v, the particle velocity components, and ¢ the time. It is further
assumed that the deformations and rotations are very small. Therefore, substituting the geometric equation
into the physical one yields
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Fig. 1. Semi-infinite layered orthotropic bar of rectangular cross-section and coordinate system.
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where Cy, Css and Cgg are elastic coefficients.
The governing equations (1a)-(1c) and (2a)—(2c) can also be expressed in the following matrix form

@:4%+4%+4@, (3)

where the vector U' = (v, v}, 0, 0., 0, )T, Ui, U, U, and U. are the partial derivatives of U’

with respect to ¢, x, y and z, respectively, the matrices A, A’ and A’ have the following nonzero compo-
nents

1
Ax26_Ax35_A 6—sz4—A 5—/4224—;7

i i z i z i _ i
Ax62 }61 C66’ x53 251 CSS’ 43 Az42 - C'44'

The surface ¢ = ¢ — t(x,y,z) = 0 is introduced to represent a characteristic surface in space (x,y,z, ).
The value of function f(x,y,z,¢) on the characteristic surface can be defined as the following expression by
f(x,p,2,1(x,,2))

*

f,a :f,zx +ftT,0€ (OC = xvyvz)v (4)

where f, and f, present the values on the characteristic surface after taking the partial differentiation.
When formula (4) is substituted for stresses and velocities in Eq. (3), the following matrix form can be
obtained

DV, +4= 07 (5)
where
o Cie, + Clst> — pf CoeTaTy CisTats
Wy z i T
V=%, D= ClsTaty CogTh + CuaTs = 1! CaaTy !
vl CgST‘XT,Z CAI'MTJ’TJ CQST?X + C‘l‘4‘czy o pi

* *

* * *
i i i i i i i i
O—xy,y + O—z'c,z - C66I~,V (Ux,y + Uy,x) - CSSTZ (Ux,z + Uz,x

%

)

* * * * * *
i i i i i i i i
A= O-xyx + O-)z,z - 66‘Esx (Ux,y + Uy.,x) - C44Tsz <Uy‘z + Uz‘y>

* * * *
i i i i i i
O-zx,x + O-}z,y - CSSTsX (Ux,z + Uz,x) - C44T,y( + Uzy)

The differential equation of the characteristic surface is governed by
Det D = 0. (6)
For a certain time ¢, let n = (n,,n,,n.) be the unit normal vector to the characteristic surface, and ¢’ the
normal wave speed. Then we have
1y

T :F (6 =x,y,2). (7)
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The bicharacteristics of Eq. (5), which are equivalent to the characteristics of Eq. (6), are

doa .
— = = . 8
dr cny (x=x,y,z) (8)

The total differentiation of a function f(x, y,z,¢) along a bicharacteristic is given by

d
dj;*c(fxnx +fy”v+f2”2) + /i (9)

Eliminating f, between Eqs. (4) and (9) leads to the following expression

fl ff + fo— T (fane + fon, + fon.), (x=x,y,z). (10)

There exists a left eigenvectors /(= [y, I, 3), which makes the following expression

ID=0. (11)
It is easily obtained the following equation

I(DV,+A4) = 0. (12)

By using Egs. (8)—(11), Eq. (12) can be converted into

do’ do! do! dvi [/ C Ci
—y(l]ny —|— lznx) + —yz(lzl’lz + 131’1}7) + &(llnz + l3nx) - UX |:( 6-6 1’12 + i”?) l'

dz dz dt dz cd v
+C_nxnv12 + —= Ci nvnzlg} — % [(C}lé ni + C;j >l +C_n yply +—= C. nynzlg}
— (Z); {(%ni + 634 2)1 +—== Css nv n.l, +%nynzlz] =-S5, (13)
where
S=clh(a,,, +0a..)+cha,, +a,..)+c o, +0a,.,) = Colndy +n) (v, +v,,)

- C;S(nzll + nxls)(ujnz + v;x) - C:.M(nllz + n}’lf;)(v;,z + v;y) - Ci(”yll + nxlz)( xy vnx to

xvyn} + axvz )

—c(ndy + ncd3) (0o iy + O yhty + 0ocon.) — c(nly + 1y 03) (04 0y + )21y, + G, 202)
+ [Cgé(llni + ILn.n,) + Cgs(llnf + lgnxnz)} (v e+ vwny + vi,‘znz)
+ [Céé(lzni + Linwny) + Ciy(Ln? + l3nynz)] (U;,x”x + v;yny + U;,‘an)
+ [Css(lm + hinen.) + Cfx4(l3” + Lnyn )} (Ui,x"x + U;y”,v + Ui,znz)'
In order to get the numerical solution by the method of numerical integration along bicharacteristics, it

is convenient to select the bicharacteristics on the surfaces x = 0, y = 0 and z = 0. So the solutions of Eq.
(11) may be given as
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¢, =\/Cig/pf for n=(1,0,0), I=(0,1,0),

9

¢y =4/Cis/pt for n=(£1,0,0), I=(0,0,1),

¢y =/Cls/p' for n=(0,%£1,0), I =(1,0,0),

Cé = C:M/pl for n= (O,il,O), l= (ana 1)7

¢y =\/Cis/pf for n=(0,0,£1), I=(1,0,0),

&= /Cufp for n=(0.0.£1), 1=(0,1,0)

8933

Substituting the above values into Eq. (13), the differential relations along bicharacteristics may be written

as
dgf} —p'el dvt; = —c’io;“ + pi(ci)%;y for ¢ = ¢!,
d;',tiy +p'c) (Z—Uj = c’iaj,_,yz + Pi(cil)zvi_y for ¢ = —ct,
dgt;x _ pic;d—tlz = —C;a;)z,y + pi (C;)ZU;Z for ¢ — C§7
Vo g e e — ot 4/ (e, for & =,
do, dv!

A i Lo A G

2 i i
v, forc =c,

dgfy + p'e} (Z‘ =cicl,. +p' (c"l)zu;x for ¢! = —¢l,
2 gt () ford =,
d(%;’z + ‘L’f = ol 4 p/ (&), for é = ],
Yoy = ol 4 (), ford =,
dgfx + Plféd—f = &l + ()"0, for ¢ = ),
ddit;’z — picgd_t; = —chal, +p' (cg)zv;y for ¢! = cf,
d% +plch % =chal 4+ /()" for ¢ = —d},

1=(0,1,0),
1=(0,1,0),
1=1(0,0,1),
1=1(0,0,1),

I'=(1,0,0),

1=(1,0,0),
1=(0,0,1),
1=(0,0,1),
1=(1,0,0),
1=(1,0,0),
1=1(0,1,0),
1=(0,1,0).

Integrating Eq. (14) along the corresponding bicharacteristics and Eq. (5) along the time axis, and per-
forming proper linear combinations of those equations, we can successively obtain the following differential

relations for six unknown increments
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2
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k

80, =3 [2C5 (0, + ) + (0L + 0y + 0, + 0 ) () K]+ O(),

where 8f = f(xo, 0,20, %) — f (X0, 30, 20, o — k), k is the time step, (xo, 0,20, fo) is an arbitrary point in space
time. The quantities on the right-hand side of Eq. (15) are all known data at the point (xo, yo, 20, fo — k), and
the partial differences f., f, fz, fxeo faps fzzs Fops for and f at the point(xo, yo,zo, % — k) can be approxi-
mated by central differences.

When the point (xo, 3, 20, %) is located on the interface between layers i and i + 1, the bicharacteristics
corresponding to n = (0,0, —1) for layer i and n = (0,0, 1) for layer i + 1, which all intersect the plane
t =ty — k at points in their adjacent layers, should not be employed in the computation of the unknown
increments. On the interface between the two layers, the following velocity and stress components must be
continuous

vh =it v; = v;“, vh =it ajz = o;l, ol =all. (16)
Using the similar way for obtaining Eq. (15), we can finally obtain the following unknown velocity and
stress components with the help of Eq. (16):

. Dy—D,

St = dvit =2
X X Ay + B,

v =&t = D =~ D,
7 7 A1+ By’
... Ds

8 [ 5 i+1 _
Uz Uz A3 ?

dd = 8g'! = AD> + BiDy , (17)
” ” Ay + By
; A>Dy + ByDs

8¢l =3t ="
zX zx A2 +BZ

k ) . . ) )
6O-xy 2 |:2Cé6( + U ) + (Cll)zk (O-;cy,xx + O-;cy,yy + O-[zx,yz + O-fvz,zx):| ’
i k i 12 i i i i i i
60;;1 =2 [2(;64&1 (U;l T u:yl) T (Cl+1) k(a“ 4t 4Gt 4 gt )}7

Xp,XX vy Bu% zX,yz )zZ,2X

where
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Ci Ci 2C1 Cz+l
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When the point(x, 1, 2, {o — k) is located on the boundary, some bicharacteristics on the characteristic
surface intersect the plane ¢ = ¢, — k at points outside the region of interest. Therefore, the relations along
those bicharacteristics cannot be used. Instead of those unused relations, the admissible boundary condi-
tions are adopted to work out the numerical solution at the point located on the boundary. Simultaneously,
the forward or backward difference equations should be employed for approximating the partial differ-
entiation.

3. Numerical simulation

In order to generalize the features of the three-dimensional torsional stress wave propagation in layered
orthotropic rectangular bar, we calculate several numerical examples simulating stress wave propagation in
a semi-infinite two-layer rectangular bar with different materials on the basis of the numerical method
described in the present paper.

Assuming the planes of the cross-sections are planes of elastic symmetry and referring the analysis result
(Lekhnitskii, 1981) for the same rectangular bar loading a static toque, we take the initial and boundary
conditions as

o, =0, =d =vi=1=1=0, (i=1,2) for =0,
0. =p(t), o, = p(t), 0, =0, (i=1) forz=0,
aiy:aixzov (12172) fOI'x:ig, (183.)
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where

i L oy 1/z><l_cosh(mnuy/a)>sin@
mZ

plt) = b3,u nzﬂ . cosh(mmu/2y)

1,3

(18b)

m(t) = Z 1 (m—1/2) (W) cos M

b3n2,uﬁ 3., m2 cosh(mmp/2y)

in which ¢ and b are the depth and width of the rectangular cross-section, y = a/b the ratio of lateral

dimension, u = /C},/Cl the ratio of elastic coefficient, the factor f is defined by the series
3227 &1 2y tanh(mmu/y)
= —_— 1 L
=i B ()

the impact torque M () is given by

Mot = for 1< 1,
M(t) = {Mo, for t > t,, (18¢)

where My = 10 Nm, ¢, = 3.454 ps.

The material and geometric parameters of layer A (i = 1) are: Cy =4.02 GPa, Css =4.41 GPa,
Ces = 4.90 GPa, p = 2.11 x 10* kg/m?, L; = 50 mm; and the parameters of layer B (i = 2) are: Cyy = 1.3
GPa, Css = 1.3 GPa, C¢s = 1.3 GPa, p = 1.21 x 10° kg/m?, b = 10 mm, L, = oo. For the two layers, the
same spatial mesh size is taken as # = 0.5 mm, the same time step size k = 0.5 i/c.

The distributions of the shear stress in layer A before the torsional wave reach the interface are inves-
tigated first. As a result, we notice that for the impact torque M (¢) presented in Eq. (18¢c), the cross-section
of the rectangular bar does not remain plane and the distributions of the torsional stresses become uniform
when the wave front passed, which are similar to the case of the rectangular bar under a static torque M,
(the figures are omitted here) (see e.g. Lekhnitskii, 1981).

Fig. 2 shows the distributions of the shear stress ¢,, along the longitudinal line (x = a/2, y =0) of a
rectangular bar (y = 1.5, u = 0.95) at different times. The symbols I and R located on the ordinate axis in
this figure represent the amplitudes of the incident torsional wave and the reflected torsional wave, re-
spectively. From this figure, we can clearly notice that the reflected torsional wave and the transmitted wave
occurred on the interface (z = 50 mm). Moreover, the amplitude of the shear stress o,. decreased when the

30

0y (MPa)

10

z (mm)

Fig. 2. Distribution of the shear stress o,, along the longitudinal line (x = a/2, y = 0) of the rectangular bar (y = 1.5, u = 0.95).
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60

oz (MPa) 0y, (MPa)

Fig. 3. Shear stress g,. at the point (/2,0,3b/2) and o, at the point (0,5/2,3b/2) of the rectangular bar with the different ratio y.

reflected torsional wave passed. It is because that the sign of the shear stress o,. produced by the reflected
torsional wave is opposite to the one produced by the incident torsional wave. At the same time, the
distribution of the torsional stress o,. becomes uniform when the torsional wave front passed.

Fig. 3 describes the time variations of the shear stress g, at the point (a/2,0,35/2) and the shear stress
0., at the point (0,5/2,3b/2) with the different ratio y. It can be seen that the amplitude of the shear stress
g,- becomes smaller as the ratio y rises. But the tendency of the shear stress 0., with the ratio y is quite the
reverse. In order to clarify the influences of the elastic coefficient ratio u on the torsional stresses, additional
cases are worked out. Fig. 4 shows the time variations of the shear stress o, at the point (a/2,0,35/2) and
the shear stress o, at the point (0,5/2,3b/2) with the different elastic coefficient ratio u (where Css
maintain constant). From Fig. 5, we can see that the amplitude of the shear stress o,. increases with the
elastic coefficient ratio u decreasing, while the amplitude of the shear stress o, has little changes. The same

60
40
&
£ 20
&
0
&
s 20
&
-40
mlllllj
0O 10 20 30 40 50 60 70
t (us)

Fig. 4. Shear stress g,. at the point (a/2,0,3b/2) and o, at the point (0,5/2,3b/2) of the rectangular bar with the different elastic
coefficient ratio p.
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Fig. 5. Distribution of the shear stress o,. in x—z section of the rectangular bar at time ¢ = 34.54 ps.

tendency of the time variations of the shear stresses with y or u occurred at the other points of the rect-
angular bar (its figures are omitted).

The process of the torsional stress wave propagation in the section y = 0 of a rectangular bar (y = 1.2,
u = 0.95) from layer A into layer B is clearly described by Figs. 5-7. It is evident that the variation of the

shear stress distribution at the solid surface near the interface is similar with the case of the layered cylinders
(Liu and Xie, 1998).

T % §

Tl =

LT |0 &
////////////////%/,’,’,j’,’/’/’////;' /////I/I////” 7 /////// /””I/I 7 ”/[””

V77, I//////

Y iy
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P /////////////////////////,,/,/,,’////I////////////I//////;/I;;/IZZ;;ZZZ;,/ ):g

S5 1y,
S0 g5 L /II///II/III//////;
< //77/77/ 35 30

Fig. 6. Distribution of the shear stress g,. in x—z section of the rectangular bar at time ¢ = 41.45 us.

o (MPa)

y i
Vi )
Zl T
///////7////' I////////////// 4 7
% ///////I/

//;I///////////////////////// 7l
R ////,}///////////////////////////;// ””””l//’
G //}/I/I//I///////////////////;////;;;/I///I””” 7 7

K227 20, 7 II

7 L
y /,////////////// ////////////////I//////f”””””””””””””””l 3
Ll £

IlI/I/l//I/

iy

=z 7y o es 30

—

Fig. 7. Distribution of the shear stress o,. in x—z section of the rectangular bar at time ¢ = 48.34 ps.
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4. Stability of the difference equations

Instead of making a theoretical investigation of the stability and convergence of the numerical solution,
we just obtain an approximate result by taking the von Neumann necessary condition that the spectral
radius of the matrix be not greater than unity. It is easily to confirm that Eq. (15) are equivalent to the Lax—
Wendroff difference equations for Eq. (3). For this case, by applying Fourier analysis to Eq. (3), the cor-
responding amplification matrix associated with Eq. (15) can be derived as follows

S(01,0,,03) =R +1iJ (19)
with
K\’r, 2 i\2 2
R=1+ (h) {(A;) (cosOp — 1) + (4,) (cos b, — 1) + (A1) (cosb; — 1)}
1k

P
-3 (Z) [(A;A; + AiA;) sin 6, sin 6, + (A;Ai + AQA;) sin 0, sin 0 + (A.AL + A'A4%) sin 0, sin 03} ,

J:—Z<A;sm(91+A;s1n02+A;s1n03>7

where 0, 0, and 05 are arbitrary parameters that correspond to arbitrary wavelengths in the x, y and z
directions, I the unit matrix. For the strongest restriction on k/k that ensures satisfaction of the von
Neumann necessary condition is 8; = 6, = 0; = &, the condition for spectral radius of S less than or equal
to unity is

i\ i i i i i
(Clk) Smin[ Coo G Cw 1 G G (20)
h Cig+CL'Ciy + Ci, ' Ciy + Ci ' 27 2CL " 2C,

Although the stability analysis described above does not concern the effect of boundary condition, Eq. (20)
is very available for selecting the appropriate value of ¢,k /A. In fact, the stability of the numerical procedure
in the present calculations is checked by evaluating the relative energy error E,, in the system, where E,, is
defined as

Einput - Etotal

E,= )
Einput

in which the input energy Ei,pu and the total energy Eio are evaluated by

al2 b/2 t
Einput == / / / (_Uxazx - Uyo-yz) dXdydta
—aj2 J-b2 Jo

m a2 b/2 L; 1 o s - (O_;'Cy)Z (0_;2)2 (O’i )2
Eoal = ;/_ ‘/_ A {EP{(UX) + (Uy) + (Uz) + 2C166 + 2CA4 + 2C’55 dxdde

a/2 J-b2

From Eq. (20), we take c¢;k/h = 0.5. The numerical tests indicated that the maximum relative energy errors
involved in the computed examples were always less than about 0.86%.
5. Conclusion

With the purpose of analyzing torsional stress wave propagation in layered orthotropic media due to
impact torque, the numerical algorithm based on the method of numerical integration along bicharacteristics
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is proposed. By the numerical examples, the propagation, reflection and transmission of the torsional stress
wave in the vicinity of the interface of layered orthotropic bars of rectangular cross-section are examined in
detail.

Theoretically, the numerical algorithm developed here is applicable to a wide variety of problems for
simulating torsional stress wave propagation in layered orthotropic solids. However, in view of the fact that
the treatment for general curved boundaries and interfaces is difficult using the present technique, the
computer program is only made for analyzing the impact problems of which the computational model is
shown in Fig. 1.
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